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Calculation formulas are suggested for solving the three-dimensional inverse problem of reconstruction of 

the heat flux by the temperature of a heated surface. For the special case where the heat flux is uniformly 

distributed over the heating surface, a numerical experiment on reconstruction of the heat flux is performed 

for various boundary conditions of heating. 

In solving heat transfer problems in hydrodynamics, aerodynamics, a number of technological processes, 
and laser treatment of materials, one is faced with the problem of determination of the heat flux by the temperature 

of heated surfaces. The corresponding inverse problem pertains to the class of conventionally correct problems and 

is called the problem of recalculation of boundary conditions [1 ]. 
In [2 ], analytical solutions of the nonstationary problem of recalculation of boundary conditions are 

obtained for the situation where heat transfer proceeds on a face of a uniform plate infinitely extended in the 

transverse direction. The back surface of the plate may be heat-insulated or maintained at a constant temperature. 

In the present work the corresponding analytical representations [2 ] are realized in the form of algorithms for the 
case where a heat flux incident onto a plate is uniform on its surface. In a numerical experiment the authors 

investigate the quality of the reconstruction. 
A solution of the problem of recalculation of boundary conditions is described in detail in [2 ] for a semi- 

infinite solid and for a plate of finite thickness with a cooled or heat-insulated back surface. We present the 

corresponding relations, assuming that the initial temperature is equal to zero on the entire plate. 
a) The back surface of the plate is maintained at a constant temperature (T(0, p,  t) = 0). In accordance 

with [2 ] we write 

q (p, t) - zck dr d 191 1 / 2 ,  t - r 2 ~ f  dp' (t - T) 4a 2 (t - T) a2L 0 d~ L2 a X - ~  exp - p)2 
(1) 

Relation (1) is valid for arbitrary values of a 2, L, and the variables p and t. However, it may be simplified provided 

certain relationships exist between these quantities. 
For Fo >> 1, from Eq. (1) we derive the asymptotic formula 

q (t ' p) = k T (t ' p) + L2k { OT (t ' p) - a2A• (t ' p) --3a 2 Ot . (2) 

b) In an approximation of a semi-infinite solid (Fo << 1) Eq. (1) is transformed into an equation with an 

Abel kernel: 

T ( T , p )  exp ( -  ( P ' - / ? ) k ]  
4a 2 (t - r) ) (3) ' ?s 1 f a r  dp 

q ( t ,  p ) -  2a 2 ~  0 -o~ X / ( t - ~ ) 5  
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c) If the back surface of the plate is heat-insulated ((OT/Oz)(O, p,  t) = 0), the flux is related to the 

temperature on the target surface as 

, - r - - 0 3  1, L2 a x ' exp - . (4) 
a2L o dr - ~ (t - r) 4a 2 (t - r) 

In the case Fo >> 1, from (4) it follows that 

Lk { OT (t ,  p) a2AxT (t p ) }  (5) 
q ( t ,  p )  = - - 2  - , , 

a Ot 

and at Fo >> 1 representation (4) turns into (3) with an Abel kernel in the time coordinate. 

We shall investigate solutions for the case where the flux is distributed uniformly over the plate face. It is 

obvious that T(z, p ,  t) = T(z, t). Instead of (1), (2), (4) and (5) we arrive at 

q ( t ) = -  2k ~f dr (3)ol ( 
L 0 dr 

1/2, t-r 2) 
L2 a d r .  

(6) 

kL  d r  (t) 
q (t) = - - 5  

a dt 

(7) 

t dT ( r )  dr 
u (t)  = - J 

a v ~  o dr x/ t -  r 
(8)  

q ( t ) = - - ~  0 dr ~3 2 a2 
(9) 

q (t) = - k [ T (t) - TH + l - L 2  dT (t) ] 
L 3 a 2 dt " 

We now give solutions of the direct problem for cases a), b), c), respectively: 

(10) 

2a 2 t ( t - r  2)  (11) 
T ( t ) -  kL f q ( 0 9 3  1 - - a  d r .  

0 ' 2 

t dr (12) 
T (t) = a f q (v) - -  

kd-Y o X/ t - r  

2t i ) T (t) = - a a__ f q (r) 01 1 / 2 ,  t -  r 2 (13) 
kL o L2 a dr .  

The solution for a heat-insulated plate coincides with that obtained earlier in [3 ]. Formulas (6), (8), (9) may be 

rewritten in a form free of temperature differentiation: 

q ( t ) = - - ~ T ( t ) 9 3  1, ~ a  + 
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+ f dz I T ( t ) -  T ( ~ ) ]  1 a 2 
0 d~ 3 ' ----~-- ' 

(T (0, 0 = o),  

a C Y  v7 2 o ( t - T )  a~ ' 
Fo << 1 , 

(14) 

(15) 

( t2) 
q ( t ) -  2kL T( t )  91 1 / 2 ,  ~ a  + 

+ ( dz [T (t~ _ T (r) l d 01 t - r 2 OT L2 a d r ,  - -  ( 0 ,  t) = 0 
Oz 

, 
(16) 

The structure of the integrands in relations (6), (8), (9), (14)-(16) is such that integration fails to smooth 

a noise component entering the measured temperatures. Therefore direct calculation of q(t) by these formulas leads 

to instability of conversion [4 ]. Therefore in developing the corresponding algorithms for reconstruCtion the 

function T(t)  has been approximated by smoothing cubic splines [4 ] that take into account the level of the meas- 

urement error. 

Reconstruction of the intensi ty for thermophysical situations a) and b) was modeled in a numerical 

experiment. Aluminum was chosen as the material of the plate. It was assumed that temperature values are 

recorded at the points Ti: 0 = rl < ~-2 < T3 < ... < rn = 1 sec with the time resolution At = 1/24 sec. The initial data 

had a random measurement error ~i so that 

T i =  TO:i) + ~ i ,  i =  1 ,  n .  

It was assumed that ~i follows the normal distribution law with the zero mean and dispersion a 2. The function T(t)  
i i  n /  

was approximated by a smoothing cubic sptine Sn,a(t) that takes the boundary conditions Sn,a(O) = O, Sn,a (t = 

1 sec) = 0 [4 ] taking into consideration the specific features of the solution of incorrect problems. With this 

substitution the integrals in the r ight-hand sides of (6), (8), (9) and (14)-(16) are calculated analytically. Infinite 

summation in formulas (6), (9), (14), (16) was restricted by the specified error. In all cases it did not exceed 1 ~ .  

For the numerical experiment we chose two functions as the models of the initial heat flux: the "pulse" 

r (0 = too (,) { 17r 2 - 32?  + 147 + 1 }, 

where I 0 = 10 W/cm 2, r = t / to,  to = 1 sec, and the "cap" 

/ o e x p I - -  ( r - 0 " 5 ) 2  t 
(0.5) 2 -- (r -- 0.5) 2 ' 

q (0 = 

O, 

1, v > _ 0 ,  (17) 
T _ < l ,  O ( T ) =  0 ,  r < 0 ,  

IT - 0.5[ _< 0.5,  

[r  - 0 .51  > 0 . 5 .  

(18) 

Dependences (17), (18) are shown in Figs. 1 and 2 (curves 1). In the absence of errors in the measured 

temperatures the error in calculating q(t) is attributable to substitution of the cubic spline Sn(t) for T(t )  and of 

finite summation for infinite summation. As the numerical experiment revealed, such an approximation provides 

sufficiently high accuracy of calculation of the corresponding integrals. Even in the case of "pulse" dependence (17) 

for At = 1/24 the error of reconstruction of q(t) does not exceed 2.5%. In the solution reconstructed with the use 

of interpolation splines in the presence of measurement noise (curves 2 in Figs. 1, 2) random oscillations emerge 

that increase with the integration interval, and therefore we have used the smoothing splines Sn,a(t) in the sub- 

sequent analysis. The smoothing parameter a was chosen by the discrepancy method [4 ]. 
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Fig. 1. Restoration of the model dependences q(t) by the temperature of the 

cooled target surface: a) by formula (17); b) by formula (18); 1) exact 

solution; 2) restored solution with use of splines; dark points) smoothed 

solution based on expression (6); light points) smoothed solution based on 
(14). q, W/cm:; t, sec. 
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Fig. 2. Restoration of the model dependences q(t) by the temperature of the 

heat-insulated target surface: a) by formula (17); by formula (18); 1) exact 

solution; 2) reconstructed solution with the use of splines; dark points) 

smoothed solution based on expression (9); light points) smoothed solution 
based on (16). 

Figures 1 and 2 show results of reconstruction of q(t) by model dependences (17) and (18) with an error 

of 3 ~  in the input data. For model dependence (18) q(t) is reconstructed more exactly. Figure 1 corresponds to a 

cooled target, and Fig. 2 to a heat-insulated one. Dark points show results of reconstruction using dependences 

(6), (9), and light points pertain to results calculated by (14), (16). As is seen in Fig. 1, the quality of reconstruction 

of q(t) depends weakly on the type of boundary-value problem. The dependences reconstructed by formulas (14), 
(16), which contain no differentiation under the integral sign, are more exact. For comparison, we calculated the 

"dispersion" of the measurement error for a given t on the basis of the volume sampling/Vsamp (Nsamp = 10): 
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TABLE 1 

The solution at a-- 0.03 for the boundary conditions 

dT(O, t) dz = - (1/k)  q(t); dT(0, t ) / d z  = -  ( 1/k) q(t); 
Time T(L,  t) = 0 dt(O, t ) /d z  = 0 

Error "dispersion" of the solution based on the algorithms 

(17) (23) (19) (25) 

At 0.141 0.021 0.1657 0.031 

2At 0.038 0.003 0.050 0.004 

3At 0.011 0.003 0.017 0.002 

4At 0.004 0.003 0.007 0.002 

5At 0.002 0.002 0.004 0.002 

D2 (qn,a) 0.0006 0.0002 0.0008 0.0002 

1 N ~  mp (0 (19) 
A 2 ( t )  -- Nsam p /=I  (qn,a (t)  -- q ( / ) ) 2 .  

Here q(t) is the exact solution; -(/) rt~ is the solution constructed by the /-th realization of the noise values of *-/rt,r \ ] 

temperature on the basis of smoothing splines with the smoothing parameter a. 

Results of this comparison for a = 0.03 in the case of "pulse" dependence (17) are presented in Table 1, 

where 

] 1 A2 (20) 
D ( q n , a ) =  ~ (t]) 

]=I 

is the root mean square error of the solution (n t = 25). 

It may be inferred from Table 1 that for algorithms without differentiation of the measured temperature 

values, A2(t) may be substantially smaller than the corresponding values for algorithms with differentiation. A 

comparison of calculations performed for the "pulse" and the "cap" shows that such a difference is typical for the 

initial sections of "pulse" dependence (17). For the smoother initial function (18) the difference is less pronounced. 

Numerical experiments were conducted for targets with L = 1 cm. For the observation time t = 1 sec the Fourier 

parameter Fo was 0.86. Provided the condition Fo ___ 0.2 is fulfilled, reconstruction may be accomplished using 

algorithms based on the inverse Abel transformation (8), (15). 

To sum up, we have investigated reconstruction of the heat flux by the temperature of the heated surface 

of a plate infinitely extended in the transverse direction. Analytical solutions obtained ealier [2 ] were investigated 

numerically for a situation where the heat flux is uniformly distributed over the heated surface. The accuracy of 

algorithms for typical models of a time-dependent intensity was evaluated and it was shown that use of smoothing 

splines and algorithms without differentiation of temperatures improves the accuracy of the reconstruction. 

N O T A T I O N  

T(t, p,  temperature on the plate surface; q(t, p ) ,  heat flux on the plate surface; p = {x, y}, transverse 

coordinate; t, time; K, thermal conductivity; a 2, thermal diffusivity; L, plate thickness; Ol(t/, ~) = 2Z ( -1)  
kE z 

exp (-7c2(k - 1/2) 2) sin [zrt/(2k + 1) ], Jacobi theta function [5]; Fo = aZtZ/L 2, Fourier parameter; 030/, ~) = 
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= E exp (-Jrk2~ + i2zr/cq), Jacobi theta function [5 ]; A• = (O2/Ox 2) + (02/0y2), transverse Laplacian; ~i, random 
kC z 

measurement error; Sn,a (t), smoothing cubic spline; A2(t), "dispersion" of the measurement error; D(qn,a) , root mean 
square measurement error. 
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